Emerging energy related technologies

The Economist’s latest Technology Quarterly contains a number of articles with climatic significance:

These sorts of innovations (aside from the oil and gas extraction story) would surely be driven forward if carbon pricing made people care more about the consequences of their greenhouse gas emissions.

After the Ice

Having already read a great deal about climate change and the Arctic, I expected Alun Anderson’s After the Ice: Life, Death, and Geopolitics in the New Arctic to provide only a moderate quantity of new information. I was quite surprised by just how much novel, relevant, and important content he was able to fit into the 263 pages. The book discusses the historical and current relations between governments and Arctic indigenous peoples; ice flow dynamics and exploration; the changing nature of Arctic ecosystems and species, along with information on what climate change may do to them; international law and the geopolitical implications of a melting Arctic; oil, gas, and other natural resources, and how their availability is likely and unlikely to change in coming decades; the rising tide of Arctic shipping, and the special safety and environmental considerations that accompany it; and the feedback effects that exist between a changing Arctic and a changing climate.

Ecosystems

Some of the best information on the book is about biology and Arctic ecosystems. It describes them from the level of microscopic photosynthetic organisms up to the level of the megafauna that gets so much attention. Anderson argues that most of the large marine mammals (seals, walruses, whales, etc) are threatened to some extent or another by the loss of sea ice. This is for several reasons. First, it could disrupt the lowest levels of the food web they rely upon. Second, it could permit the influx of invasive species that could out-compete, starve, or attack existing Arctic species. Third, the lifecycles of Arctic animals are slow and deliberate, and thus liable to disruption from faster-breeding competitors. Disappearing sea ice off Svalbard has already completely wiped out what was once “one of the best areas for ringed seal reproduction.” Arctic species, argues Anderson, will need to “move, adapt, or die.” Generalists like beluga whales have promise, while the narwhal and polar bear may be the most vulnerable large creature in the ecosystem.

One consequence of the loss of multi-year sea ice that I had not anticipated is the potential for a massive migration of species between the Pacific and Atlantic oceans, with invasive species potentially seriously altering the composition of ecosystems on both sides. Melting ice could therefore produce major changes in much of the world’s ocean. Even before that, expanded range for orcas could have a significant effect on life in northern waters. Where ice used to provide safety, by obstructing their pectoral fins, these powerful predators increasingly have free reign.

Resources, shipping, and tourism

Anderson makes an effective argument that most of the oil, gas, and resources in the Arctic will be effectively locked away for some time yet. There will always be ice in the winters, glacial ice calving off Greenland and other Arctic islands poses a significant risk due to its extreme hardness, and very high commodity prices are necessary to justify the risk and capital investment required to operate in the region. (See this post on the the Shtokman gas field.) He expects that, even if there is a boom, it will be short-lived and of limited benefit to those living in the region. In particular, he cautions people living in the north not to abandon traditional ways of life sustained by things other than oil and gas. Living for a couple of rich decades and then being left with nothing would be a tragic outcome.

The book also downplays fears about a scramble for resources and sovereign control. Anderson argues that the United Nations Convention on the Law of the Sea (UNCLOS) already provides a clear legal framework and that negotiated outcomes are probable. That should provide some comfort to those concerned about diplomatic or even armed conflicts in the changing north. One danger Anderson does highlight is how the risk of collision with ice, increasing shipping and tourist traffic, and the absence of emergency response capabilities could combine. He describes plausible scenarios where major oil spills or massive loss of life could result, due to a problem with a tanker or a cruise ship (disproportionately full of elderly people susceptible to cold, as they are).

While Anderson does an excellent job of explaining some of the risks to species and human beings from a changing Arctic, he doesn’t take seriously the possibility of truly radical or catastrophic change, of the kind highlighted as possible by James Hansen. Anderson also completely fails to describe how the incremental emissions from burning oil and gas in the Arctic would inevitably increase the degree of climate change experienced by humans and natural systems. It is cumulative emissions that matter most, and extracting hydrocarbons from the far north can only increase those.

For anyone with an interest in what is happening to the Arctic and what the medium- and long-term implications of that might be, this book is enthusiastically recommended.

Ontario could phase out coal in 2010

That is the message from the Ontario Clean Air Alliance, expressed in a post on BuryCoal.com. They argue that Ontario has enough non-coal electricity generating capacity to put its four remaining coal plants on “standby reserve” between now and their legislated closure in 2014.

It is an initiative worth applauding. In contrast to targets so far off in the future as to be politically irrelevant, this is something that could be done right away. That is important, given the degree to which every year that passes before emissions peak means more drastic cuts will be required around the world afterward.

Another option worth considering is converting Nanticoke, North America’s largest coal-fired power plant, to burn biomass instead. From a health and environmental perspective, that’s not as appealing as shutting it down, but it would definitely be an improvement upon the status quo.

On academic specialization and climate change

I have spent six years in university and taken two degrees: a B.A. with majors in International Relations and Political Science and an M.Phil in International Relations. The logical academic progression, if I were to continue, would be to do a Ph.D or D.Phil. That would take between 2+ (Oxford D.Phil) and 4+ (North American Ph.D) years, but I have my doubts about whether that would be the best use of time. The 2+ is generous for Oxford, given that my thesis was the weakest part of the work I did there. I would need a more solid research project to form the basis of a doctorate.

Doing a doctorate in something like I.R. or PoliSci would certainly involve some new learning: perhaps some more quantatative and qualitative methods, certainly more exposure to theory and a particular subject area for a dissertation. It would increase how much I know about PoliSci/I.R. compared with other people who have studied in those fields.

By contrast, spending 3-4 years studying something like engineering, law, or a pure science would certainly teach me more, relative to what I know now. It would involve whole new methodologies and areas of knowledge. By any objective measure, it would widen my knowledge enormously more than doing more work on PoliSci/I.R.

That said, academia isn’t like trivia; your ranking isn’t based on your relative level of knowledge on a broad range of subjects. Rather, the stature of students is determined by how much they know compared with their peers (and, between real academics, on the basis of publication history).

At this time, I don’t have any interest in trying to rise up in academia. It would surely be a tedious endeavour, full of weird infighting and ever-increasing specialization. My ambition, at this point, is to try to make a difference in how humanity responds to the threat of climate change.

Measured against that objective, the question ceases to be about the relative abstract knowledge value of study in different areas. To me, it seems clear that more PoliSci/I.R. work would be fairly pointless. Some sort of technical study could be useful, depending on how exactly I want to work on climate change. For instance, an engineering degree would give me a better ability to evaluate ideas about energy sources, efficiency, conservation, and so forth.

Despite that, when it comes to lack of action on climate change, I don’t think a lack of technical experts is our problem. We have the knowledge and skills to start building a low-carbon global economy. What we lack is the drive to do so. That drive is unlikely to arise out of academic study, and greater technical knowledge may not provide any insights into how to generate it. Focused on that issue, spending a few more years cloistered in school doesn’t seem like a good way to advance my objective.

Everything about climate change is steeped in uncertainty. Just as we cannot know in advance how the climate system will respond to our actions, we cannot fully anticipate how entrenched human systems will respond to any sort of effort to change them. For now, the best approach seems to be a combination of branching out (to pursue multiple strategies) and determination.

That said, if it ever seems like the world has finally gotten itself off a course towards destruction, it would be nice to go back and study something interesting for the sake of knowledge itself. It would also be around that time that I thought it was fair and potentially sensible to have children. Right now, we would be introducing them into a world fraught with such terrible risk that I question the ethics of doing so.

Black carbon and the Arctic

I have written previously about the climatic importance of black carbon – tiny particles of soot, mostly from burning diesel and biomass, that have a warming effect on the climate. This effect can be most acute when the black carbon falls on snow. It absorbs sunlight and accelerates melting. Andreas Stohl, from the Norwegian Institute for Air Research, has tracked pollution from satellite data and identified agricultural burning in Russia, Ukraine, Belarus, and Baltic states as major sources of black carbon that ends up in the Arctic. Stohl and others have also applied trajectory models to determine how pollution from different regions ends up in the Arctic.

As shipping routes become more open, with the vanishing of multi-year sea ice, diesel-burning ships risk becoming a larger source of black carbon in the region. As one paltry step towards slowing the demise of the Arctic as we know it, the coastal states of the Arctic ocean should insist on better particle traps for vessels, both by imposing standards for new construction and requiring retrofits. Germany, Austria, and Switzerland all already have legislation in place requiring such filters. In addition to the climatic benefits, such filters could also benefit human health. Investigations between 1993 and 1998 showed that such filters “can intercept at least 99% of the sub-micron particulates in the range of heightened pulmonary intrusion.”

Governments could also insist on the use of cleaner forms of diesel that generate less black carbon. It is bad enough that oil and gas exploration in the Arctic might accelerate warming – to say nothing of the risks from methane. We don’t need little low-albedo specks of soot making things even worse.

Renewable energy and the budget

Tim Weis, from the Pembina Institute, does a good job of showing why Canada’s most recent budget is not well aligned with the government’s target on renewable energy, namely to move from generating 77% of our energy from non-emitting sources now (mostly hydro and nuclear) to generating over 90% that way by 2020. It’s a laudable goal, but one hardly advanced by the investment of a mere $25 million in renewable energy in the forestry sector, or continued inaction on the regulation of greenhouse gases.

If Canada is serious about becoming a “clean energy superpower,” we need to do better than this.

The Lindzen Fallacy

The Lindzen Fallacy is a sub-genre of the fallacy of petitio principii (begging the question) that I have named after MIT Meteorology Professor and climate change delayer Richard Lindzen. I define it as such:

The assumption that fears about catastrophic or runaway climate change are overblown, based on the assumption that climate change can never truly imperil humanity.

Many people have a deep, intuitive sense that the world wil remain as it is. In particular, that it will continue to provide the basic physical requirements of humanity, such as breathable air, acceptable temperatures, and conditions suitable for continued agriculture.

This perspective is clearly a bit of circular logic: climate change cannot be dangerous, because if it were truly dangerous, it would be dangerous. (Repeat as often as you like.)

Negative feedbacks

Lindzen has told the US Coast Guard Academy that: “Extreme weather events are always present. There’s no evidence it’s getting better, or worse, or changing.” He has suggested that there simply must be negative feedbacks that counter the warming effects of greenhouse gases, possibly through the increased radiation of heat into space, caused by columns of tropical cumulus convection carrying large amounts of heat high into the atmosphere. Satellite data from NASA’s Clouds and the Earth’s Radiant Energy System (CERES) mission raises serious doubts about this being a negative climate feedback. His perspective on climate sensitivity appears dubious both in relation to climate models and the paleoclimatic record. Lindzen also argued to the Vice President’s Climate Task Force, in the US under the Bush Administration, that action should not be taken to mitigate climate change. Climatologis James Hansen speculates that: “Lindzen’s perspective on climate sensitivity… stems from an idea of a theological or philosophical perspective that he doggedly adheres to. Lindzen is convinced that nature will find ways to cool itself, that negative feedbacks will diminish the effect of climate forcings.” Back in 1999, Hansen responded to Lindzen’s hypotheses about negative feedbacks by encouraging the scientific community to investigate two things: a) whether water vapour feedbacks can be observed, and b) whether the ocean heat content is increasing in line with the model predictions. In the view of climatologist Gavin Schmidt, subsequent evidence has been supportive of the Hansen view and has drawn into question the Lindzen perspective.

Just showing that negative feedbacks exist is not enough to prove that climate change is dangerous, or that we should do nothing about it. As I argued in a discussion with a different climate denier:

What specific mechanism counteracts the infrared absorbing effect of greenhouse gasses? If such an effect exists, why has it automatically been getting stronger as concentrations rise? Also, what proof is there that even if there were such an effect, it would protect us from any amount of increased GHG concentrations. For instance, continued business-as-usual emissions could push concentrations to over 1000 ppm of CO2 equivalent by 2100, compared to 280 ppm before the Industrial Revolution and about 383 ppm now. Even if there were negative feedback effects that significantly reduced the total forcing resulting from increased GHG concentrations (that is, lowered climatic sensitivity), it is possible that they would break down when presented with such a significant change.

It is not enough to show that there are one or more negative feedbacks in the climate system. It is necessary to show that they will be sufficient in magnitude and durability to counter the warming caused by anthropogenic greenhouse gases. The fact that concentrations of those and temperatures are still rising suggest that this is not the case in today’s climate, and the existence of massive potential positive feedbacks (Arctic sea ice albedo, permafrost methane, etc) make it dubious for future climates.

Further to that, the point I am raising here is not about the technical means by which Lindzen or anyone else thinks the climate will automatically rebalance in response to changes caused by humanity. Rather, it is to highlight the faulty assumption that such rebalancing can be taken for granted, regardless of the specific means by which it might occur.

The Lindzen Fallacy is dangerous because it offers us false comfort. If mainstream climate science is correct, and a business-as-usual course will produce far more than 2°C of warming by the end of the century, future generations will think back with regret about all those in our time (and before) who falsely believed that the world could never become inhospitable to humans.

A related bit of faulty thinking

The Lindzen fallacy relates to another flawed and potentially dangerous perspective: namely, that humanity is so adaptable that, no matter how much climate changes, humanity will be able to adapt. While it is hard to see how humanity could survive runaway climate change, it is easy to see why someone would think the empirical evidence supports this view. After all, nothing has wiped us out yet. Unfortunately, this logic suffers from the same fault as that of a chicken famously described by Bertrand Russell in The Problems of Philosophy:

And this kind of association is not confined to men; in animals also it is very strong. A horse which has been often driven along a certain road resists the attempt to drive him in a different direction. Domestic animals expect food when they see the person who feeds them. We know that all these rather crude expectations of uniformity are liable to be misleading. The man who has fed the chicken every day throughout its life at last wrings its neck instead, showing that more refined views as to the uniformity of nature would have been useful to the chicken.

In short, inductive reasoning is dangerous, whenever there is a chance of something truly unprecedented taking place.

There are good scientific reasons to believe that climate change could be just such a dangerous, unprecedented phenomenon in relation to human beings.

Ocean acidification video

Ocean acidification is one of the least appreciated elements of climate change. As the atmosphere fills with carbon dioxide, some of it dissolves into the oceans. That, in turn, makes the water more acidic. This could become a major threat to organisms that depend on being about to draw calcium from the water to make exoskeletons, such as corals and shelled creatures like crabs, lobsters, sea urchins, and shrimp. The latest research from the Carnegie Institution suggests that the world’s coral reefs will begin to disintegrate before the end of the century, if we keep releasing greenhouse gas pollutants at this rate.

Over at A Few Things Ill Considered, there is a link to a good twenty-minute video explaining the problem.

The only way to keep the oceans from getting ever-more acidic is to stop using the atmosphere as a dump for carbon dioxide pollution. The most important means of limiting that is to stop burning coal, as well as unconventional oil and gas.

While the consequences of acidification for corals may be sad, and may offend our aesthetics, it is worth remembering that all life on the planet depends indirectly on ocean life for survival. We cannot know in advance what consequences there will be for humanity, if we continue to use the atmosphere as a dump and turn the oceans to acid.

2010 SFT – climate and energy

Here are the sections from today’s Speech from the Throne (SFT) that relate to climate and energy:

  • “Our energy resource endowment provides Canada with an unparalleled economic advantage that we must leverage to secure our place as a clean energy superpower and a leader in green job creation. We are the world’s seventh largest crude oil producer with the second largest proven reserves. We are the third largest natural gas producer, the third largest hydroelectric generator, the largest producer of uranium, and by far the largest supplier of energy resources to the world’s largest marketplace. To support responsible development of Canada’s energy and mineral resources, our Government will untangle the daunting maze of regulations that needlessly complicates project approvals, replacing it with simpler, clearer processes that offer improved environmental protection and greater certainty to industry.”
  • “Our Government will continue to invest in clean energy technologies. It will review energy efficiency and emissions-reduction programs to ensure they are effective. And it will position Canada’s nuclear industry to capitalize on the opportunities of the global nuclear renaissance – beginning with the restructuring of Atomic Energy of Canada Limited.”
  • “The Joint Review Panel on the Mackenzie Gas Project has completed its report. Our Government will reform the northern regulatory regime to ensure that the region’s resource potential can be developed where commercially viable while ensuring a better process for protecting our environment.”
  • “Nowhere is a commitment to principled policy, backed by action, needed more than in addressing climate change. Our Government has advocated for an agreement that includes all the world’s major greenhouse gas emitters, for that is the only way to actually reduce global emissions. And it has pursued a balanced approach to emissions reduction that recognizes the importance of greening the economy for tomorrow and protecting jobs today.”
  • “The Copenhagen Accord reflects these principles and is fully supported by the Government of Canada. Together with other industrialized countries, Canada will provide funding to help developing economies reduce their emissions and adapt to climate change. Here at home, our Government will continue to take steps to fight climate change by leading the world in clean electricity generation. And recognizing our integrated continental economic links, our Government will work to reduce emissions through the Canada-U.S. Clean Energy Dialogue launched last year with President Obama’s administration.”

None of this is very encouraging. Rather than celebrating our huge fossil fuel reserves, we should be recognizing the risks associated with burning them. Similarly, brushing aside regulations that reduce the pace of fossil fuel exploitation will hardly help us avert catastrophic climate change.

The pledge to “review energy efficiency and emissions-reduction programs to ensure they are effective” is also discouraging. Canada still hasn’t deployed any sort of carbon price: a vital component of an overall climate change response.